The optimal $s^2$-stage third order explicit SSP Runge-Kutta method has SSP
coefficient $s^2-s$ and Shu-Osher form
$$\begin{eqnarray}
\alpha_{i,i-1} & = & \left\{\begin{array}{cc}
\frac{n-1}{2n-1} & i=\frac{n(n+1)}{2} \\
1 & \mbox{otherwise} \\
\end{array}\right. \\
\alpha_{\frac{n(n+1)}{2},\frac{(n-1)(n-2)}{2}} & = & \frac{n}{2n-1} \\
\beta_{i,i-1} & = & \frac{\alpha_{i,i-1}}{n^2-n}.
\end{eqnarray}$$
The abscissas of the method are
$$\begin{eqnarray}
c_i & = & \frac{i-1}{n^2-n}, & \mbox{for } 1 \le i \le (n+2)(n-1)/2 \\
c_i & = & \frac{i-n-1}{n^2-n} &\mbox{for } (n+2)(n+1)/2 \le i \le n^2.
\end{eqnarray}$$