The optimal s-stage third order implicit SSP Runge-Kutta method has SSP
coefficient $s-1+\sqrt{s^2-1}$ and Shu-Osher form
$$\begin{align}
\mu =
\begin{bmatrix}
\mu_{11} & & & \\
\mu_{21} & \ddots & & \\
& \ddots & \mu_{11} & \\
& & \mu_{21} & \mu_{11} \\
& & & \mu_{s+1,s} \\
\end{bmatrix}, \quad
\lambda =
\begin{bmatrix}
0 & & & \\
1 & \ddots & & \\
& \ddots & 0 & \\
& & 1 & 0 \\
& & & \lambda_{s+1,s} \\
\end{bmatrix},
\end{align}
$$
where
$$\begin{align}
\mu_{11} &= \frac{1}{2}\left(1-\sqrt{\frac{s-1}{s+1}}\right), &
\mu_{21} &= \frac{1}{2}\left(\sqrt{\frac{s+1}{s-1}}-1\right), \\
\mu_{s+1,s} &= \frac{s+1}{s(s+1+\sqrt{s^2-1})}, &
\lambda_{s+1,s} &= \frac{ (s+1) (s-1+\sqrt{s^2-1}) }{ s(s+1+\sqrt{s^2-1}) }.
\end{align}
$$