Optimal 4-stage, 5th-order method:
$$\begin{array}{rr}
\mu_{21} = 0.125534208080981 &
\mu_{22} = 0.125534208080983 \\
\mu_{32} = 0.350653119567098 &
\mu_{33} = 0.048181647388277 \\
\mu_{41} = 0.097766579224131 &
\mu_{42} = 0.000000005345013 \\
\mu_{43} = 0.404181556145118 &
\mu_{44} = 0.133639210602434 \\
\mu_{51} = 0.022869941925234 &
\mu_{52} = 0.138100556728488 \\
\mu_{53} = 0.157510964003014 &
\mu_{54} = 0.277310825799681 \\
\lambda_{21} = 0.143502249669229 &
\lambda_{32} = 0.400843023432714 \\
\lambda_{41} = 0.111760167014216 &
\lambda_{42} = 0.000000006110058 \\
\lambda_{43} = 0.462033126016285 &
\lambda_{51} = 0.026143376902960 \\
\lambda_{52} = 0.157867252871240 &
\lambda_{53} = 0.180055922824003 \\
\lambda_{54} = 0.317003054133379
\end{array}
$$
Optimal 5-stage, 5th-order method:
$$\begin{array}{rr}
\mu(2,1) = 0.107733237609082 \\
\mu(2,2) = 0.107733237609079 &
\mu(3,1) = 0.000009733684024 \\
\mu(3,2) = 0.205965878618791 &
\mu(3,3) = 0.041505157180052 \\
\mu(4,1) = 0.010993335656900 &
\mu(4,2) = 0.000000031322743 \\
\mu(4,3) = 0.245761367350216 &
\mu(4,4) = 0.079032059834967 \\
\mu(5,1) = 0.040294985548405 &
\mu(5,2) = 0.011356303341111 \\
\mu(5,3) = 0.024232322953809 &
\mu(5,4) = 0.220980752503271 \\
\mu(5,5) = 0.098999612937858 &
\mu(6,3) = 0.079788022937926 \\
\mu(6,4) = 0.023678103998428 &
\mu(6,5) = 0.194911604040485 \\
\lambda(2,1) = 0.344663606249694 &
\lambda(3,1) = 0.000031140312055 \\
\lambda(3,2) = 0.658932601159987 &
\lambda(4,1) = 0.035170229692428 \\
\lambda(4,2) = 0.000000100208717 &
\lambda(4,3) = 0.786247596634378 \\
\lambda(5,1) = 0.128913001605754 &
\lambda(5,2) = 0.036331447472278 \\
\lambda(5,3) = 0.077524819660326 &
\lambda(5,4) = 0.706968664080396 \\
\lambda(6,3) = 0.255260385110718 &
\lambda(6,4) = 0.075751744720289 \\
\lambda(6,5) = 0.623567413728619 &
\end{array}
$$
Optimal 6-stage, 5th-order method:
$$\begin{array}{rr}
\mu(2,1) = 0.084842972180459 &
\mu(2,2) = 0.084842972180464 \\
\mu(3,2) = 0.149945333907731 &
\mu(3,3) = 0.063973483119994 \\
\mu(4,3) = 0.175767531234932 &
\mu(4,4) = 0.055745328618053 \\
\mu(5,1) = 0.024709139041008 &
\mu(5,4) = 0.173241563951140 \\
\mu(5,5) = 0.054767418942828 &
\mu(6,2) = 0.014574431645716 \\
\mu(6,3) = 0.026804592504486 &
\mu(6,5) = 0.159145416202648 \\
\mu(6,6) = 0.085074359110886 &
\mu(7,3) = 0.004848530454093 \\
\mu(7,4) = 0.042600565019890 &
\mu(7,6) = 0.151355691945479 \\
\lambda(2,1) = 0.422021261021445 &
\lambda(3,2) = 0.745849859731775 \\
\lambda(4,3) = 0.874293218071360 &
\lambda(5,1) = 0.122906844831659 \\
\lambda(5,4) = 0.861728690085026 &
\lambda(6,2) = 0.072495338903420 \\
\lambda(6,3) = 0.133329934574294 &
\lambda(6,5) = 0.791612404723054 \\
\lambda(7,3) = 0.024117294382203 &
\lambda(7,4) = 0.211901395105308 \\
\lambda(7,6) = 0.752865185365536 &
\end{array}
$$
Optimal 7-stage, 5th-order method:
$$\begin{array}{rr}
\mu_{21} = 0.077756487471956 &
\mu_{22} = 0.077756487471823 \\
\mu_{32} = 0.126469010941083 &
\mu_{33} = 0.058945597921853 \\
\mu_{43} = 0.143639250502198 &
\mu_{44} = 0.044443238891736 \\
\mu_{51} = 0.011999093244164 &
\mu_{54} = 0.145046006148787 \\
\mu_{55} = 0.047108760907057 &
\mu_{62} = 0.011454172434127 \\
\mu_{63} = 0.027138257330487 &
\mu_{65} = 0.122441492758580 \\
\mu_{66} = 0.037306165750735 &
\mu_{73} = 0.020177924440034 \\
\mu_{76} = 0.140855998083160 &
\mu_{77} = 0.077972159279168 \\
\mu_{84} = 0.009653207936821 &
\mu_{85} = 0.025430639631870 \\
\mu_{86} = 0.000177781270869 &
\mu_{87} = 0.124996366168017 \\
\lambda_{21} = 0.482857811904546 &
\lambda_{32} = 0.785356333370487 \\
\lambda_{43} = 0.891981318293413 &
\lambda_{51} = 0.074512829695468 \\
\lambda_{54} = 0.900717090387559 &
\lambda_{62} = 0.071128941372444 \\
\lambda_{63} = 0.168525096484428 &
\lambda_{65} = 0.760345962143127 \\
\lambda_{73} = 0.125302322168346 &
\lambda_{76} = 0.874697677831654 \\
\lambda_{84} = 0.059945182887979 &
\lambda_{85} = 0.157921009644458 \\
\lambda_{86} = 0.001103998884730 &
\lambda_{87} = 0.776211398253764 \\
\end{array}
$$
Optimal 8-stage, 5th-order method:
$$\begin{array}{rr}
\mu_{21} = 0.068228425119547 &
\mu_{22} = 0.068228425081188 \\
\mu_{32} = 0.105785458668142 &
\mu_{33} = 0.049168429086829 \\
\mu_{43} = 0.119135238085849 &
\mu_{44} = 0.040919294063196 \\
\mu_{51} = 0.009164078944895 &
\mu_{54} = 0.120257079939301 \\
\mu_{55} = 0.039406904101415 &
\mu_{62} = 0.007428674198294 \\
\mu_{63} = 0.019703233696280 &
\mu_{65} = 0.105180973170163 \\
\mu_{66} = 0.045239659320409 &
\mu_{73} = 0.015335646668415 \\
\mu_{76} = 0.116977452926909 &
\mu_{77} = 0.050447703819928 \\
\mu_{84} = 0.011255581082016 &
\mu_{85} = 0.006541409424671 \\
\mu_{87} = 0.114515518273119 &
\mu_{88} = 0.060382824328534 \\
\mu_{95} = 0.002607774587593 &
\mu_{96} = 0.024666705635997 \\
\mu_{98} = 0.104666894951906 &
\lambda_{21} = 0.515658560550227 \\
\lambda_{32} = 0.799508082567950 &
\lambda_{43} = 0.900403391614526 \\
\lambda_{51} = 0.069260513476804 &
\lambda_{54} = 0.908882077064212 \\
\lambda_{62} = 0.056144626483417 &
\lambda_{63} = 0.148913610539984 \\
\lambda_{65} = 0.794939486396848 &
\lambda_{73} = 0.115904148048060 \\
\lambda_{76} = 0.884095226988328 &
\lambda_{84} = 0.085067722561958 \\
\lambda_{85} = 0.049438833770315 &
\lambda_{87} = 0.865488353423280 \\
\lambda_{95} = 0.019709106398420 &
\lambda_{96} = 0.186426667470161 \\
\lambda_{98} = 0.791054172708715 &
\end{array}
$$
Optimal 9-stage, 5th-order method:
$$\begin{array}{rr}
\mu_{21} = 0.057541273792734 &
\mu_{22} = 0.057541282875429 \\
\mu_{32} = 0.089687860942851 &
\mu_{33} = 0.041684970395150 \\
\mu_{43} = 0.101622955619526 &
\mu_{44} = 0.040743690263377 \\
\mu_{51} = 0.009276188714858 &
\mu_{54} = 0.101958242208571 \\
\mu_{55} = 0.040815264589441 &
\mu_{62} = 0.011272987717036 \\
\mu_{65} = 0.101125244372555 &
\mu_{66} = 0.040395338505384 \\
\mu_{73} = 0.003606182878823 &
\mu_{74} = 0.018205434656765 \\
\mu_{76} = 0.090586614534056 &
\mu_{77} = 0.042925976445877 \\
\mu_{84} = 0.011070977346914 &
\mu_{87} = 0.101327254746568 \\
\mu_{88} = 0.046669302312152 &
\mu_{95} = 0.010281040119047 \\
\mu_{98} = 0.102117191974435 &
\mu_{99} = 0.050500143250113 \\
\mu_{10,6} = 0.000157554758807 &
\mu_{10,7} = 0.023607648002010 \\
\mu_{10,9} = 0.088454624345414 &
\lambda_{21} = 0.511941093031398 \\
\lambda_{32} = 0.797947256574797 &
\lambda_{43} = 0.904133043080300 \\
\lambda_{51} = 0.082529667434119 &
\lambda_{54} = 0.907116066770269 \\
\lambda_{62} = 0.100295062538531 &
\lambda_{65} = 0.899704937426848 \\
\lambda_{73} = 0.032083982209117 &
\lambda_{74} = 0.161972606843345 \\
\lambda_{76} = 0.805943410735452 &
\lambda_{84} = 0.098497788983963 \\
\lambda_{87} = 0.901502211016037 &
\lambda_{95} = 0.091469767162319 \\
\lambda_{98} = 0.908530232837680 &
\lambda_{10,6} = 0.001401754777391 \\
\lambda_{10,7} = 0.210035759124536 &
\lambda_{10,9} = 0.786975228149903 \\
\end{array}
$$
Optimal 10-stage, 5th-order method:
$$\begin{array}{rr}
\mu_{21} = 0.052445615058994 &
\mu_{22} = 0.052445635165954 \\
\mu_{32} = 0.079936220395519 &
\mu_{33} = 0.038724845476313 \\
\mu_{43} = 0.089893189589075 &
\mu_{44} = 0.037676214671832 \\
\mu_{51} = 0.007606429497294 &
\mu_{54} = 0.090180506502554 \\
\mu_{55} = 0.035536573874530 &
\mu_{62} = 0.009295158915663 \\
\mu_{65} = 0.089447242753894 &
\mu_{66} = 0.036490114423762 \\
\mu_{73} = 0.003271387942850 &
\mu_{74} = 0.015255382390056 \\
\mu_{76} = 0.080215515252923 &
\mu_{77} = 0.035768398609662 \\
\mu_{84} = 0.009638972523544 &
\mu_{87} = 0.089103469454345 \\
\mu_{88} = 0.040785658461768 &
\mu_{95} = 0.009201462517982 \\
\mu_{98} = 0.089540979697808 &
\mu_{99} = 0.042414168555682 \\
\mu_{10,6} = 0.005634796609556 &
\mu_{10,7} = 0.006560464576444 \\
\mu_{10,9} = 0.086547180546464 &
\mu_{10,10} = 0.043749770437420 \\
\mu_{11,7} = 0.001872759401284 &
\mu_{11,8} = 0.017616881402665 \\
\mu_{11,10} = 0.079160150775900 &
\lambda_{21} = 0.531135486241871 \\
\lambda_{32} = 0.809542670828687 &
\lambda_{43} = 0.910380456183399 \\
\lambda_{51} = 0.077033029836054 &
\lambda_{54} = 0.913290217244921 \\
\lambda_{62} = 0.094135396158718 &
\lambda_{65} = 0.905864193215084 \\
\lambda_{73} = 0.033130514796271 &
\lambda_{74} = 0.154496709294644 \\
\lambda_{76} = 0.812371189661489 &
\lambda_{84} = 0.097617319434729 \\
\lambda_{87} = 0.902382678155958 &
\lambda_{95} = 0.093186499255038 \\
\lambda_{98} = 0.906813500744962 &
\lambda_{10,6} = 0.057065598977612 \\
\lambda_{10,7} = 0.066440169285130 &
\lambda_{10,9} = 0.876494226842443 \\
\lambda_{11,7} = 0.018966103726616 &
\lambda_{11,8} = 0.178412453726484 \\
\lambda_{11,10} = 0.801683136446066 &
\end{array}
$$
Optimal 11-stage, 5th-order method:
$$\begin{array}{rr}
\mu_{21} = 0.048856948431570 &
\mu_{22} = 0.048856861697775 \\
\mu_{32} = 0.072383163641108 &
\mu_{33} = 0.035920513887793 \\
\mu_{43} = 0.080721632683704 &
\mu_{44} = 0.034009594943671 \\
\mu_{51} = 0.006438090160799 &
\mu_{54} = 0.081035022899306 \\
\mu_{55} = 0.032672027896742 &
\mu_{62} = 0.007591099341932 \\
\mu_{63} = 0.000719846382100 &
\mu_{65} = 0.079926841108108 \\
\mu_{66} = 0.033437798720082 &
\mu_{73} = 0.003028997848550 \\
\mu_{74} = 0.012192534706212 &
\mu_{76} = 0.073016254277378 \\
\mu_{77} = 0.033377699686911 &
\mu_{84} = 0.008251011235053 \\
\mu_{87} = 0.079986775597087 &
\mu_{88} = 0.035640440183022 \\
\mu_{95} = 0.008095394925904 &
\mu_{98} = 0.080142391870059 \\
\mu_{99} = 0.036372965664654 &
\mu_{10,6} = 0.005907318148947 \\
\mu_{10,7} = 0.005394911565057 &
\mu_{10,9} = 0.076935557118137 \\
\mu_{10,10} = 0.032282094274356 &
\mu_{11,7} = 0.003571080721480 \\
\mu_{11,8} = 0.008920593887617 &
\mu_{11,10} = 0.075746112223043 \\
\mu_{11,11} = 0.042478561828713 &
\mu_{12,8} = 0.004170617993886 \\
\mu_{12,9} = 0.011637432775226 &
\mu_{12,11} = 0.072377330912325 \\
\lambda_{21} = 0.553696439876870 &
\lambda_{32} = 0.820319346617409 \\
\lambda_{43} = 0.914819326070196 &
\lambda_{51} = 0.072962960562995 \\
\lambda_{54} = 0.918370981510030 &
\lambda_{62} = 0.086030028794504 \\
\lambda_{63} = 0.008158028526592 &
\lambda_{65} = 0.905811942678904 \\
\lambda_{73} = 0.034327672500586 &
\lambda_{74} = 0.138178156365216 \\
\lambda_{76} = 0.827494171134198 &
\lambda_{84} = 0.093508818968334 \\
\lambda_{87} = 0.906491181031666 &
\lambda_{95} = 0.091745217287743 \\
\lambda_{98} = 0.908254782302260 &
\lambda_{10,6} = 0.066947714363965 \\
\lambda_{10,7} = 0.061140603801867 &
\lambda_{10,9} = 0.871911681834169 \\
\lambda_{11,7} = 0.040471104837131 &
\lambda_{11,8} = 0.101097207986272 \\
\lambda_{11,10} = 0.858431687176596 &
\lambda_{12,8} = 0.047265668639449 \\
\lambda_{12,9} = 0.131887178872293 &
\lambda_{12,11} = 0.820253244225314 \\
\end{array}
$$