The optimal sixth-order, six-stage method ($c=0.18$):
$$\begin{array}{|rr}
\mu_{21} = 0.306709397198437 & \mu_{22} = 0.306709397198281 \\
\mu_{31} = 0.100402778173265 & \mu_{32} = 0.000000014622272 \\
\mu_{33} = 0.100402700098726 & \mu_{41} = 0.000015431349319 \\
\mu_{42} = 0.000708584139276 & \mu_{43} = 0.383195003696784 \\
\mu_{44} = 0.028228318307509 & \mu_{51} = 0.101933808745384 \\
\mu_{52} = 0.000026687930165 & \mu_{53} = 0.136711477475771 \\
\mu_{54} = 0.331296656179688 & \mu_{55} = 0.107322255666019 \\
\mu_{61} = 0.000033015066992 & \mu_{62} = 0.000000017576816 \\
\mu_{63} = 0.395057247524893 & \mu_{64} = 0.014536993458566 \\
\mu_{65} = 0.421912313467517 & \mu_{66} = 0.049194928995335 \\
\mu_{71} = 0.054129307323559 & \mu_{72} = 0.002083586568620 \\
\mu_{73} = 0.233976271277479 & \mu_{74} = 0.184897163424393 \\
\mu_{75} = 0.303060566272042 & \mu_{76} = 0.135975816243004 \\
\lambda_{21} = 0.055928810359256 & \lambda_{31} = 0.018308561756789 \\
\lambda_{32} = 0.000000002666388 & \lambda_{41} = 0.000002813924247 \\
\lambda_{42} = 0.000129211130507 & \lambda_{43} = 0.069876048429340 \\
\lambda_{51} = 0.018587746937629 & \lambda_{52} = 0.000004866574675 \\
\lambda_{53} = 0.024929494718837 & \lambda_{54} = 0.060412325234826 \\
\lambda_{61} = 0.000006020335333 & \lambda_{62} = 0.000000003205153 \\
\lambda_{63} = 0.072039142196788 & \lambda_{64} = 0.002650837430364 \\
\lambda_{65} = 0.076936194272824 & \lambda_{71} = 0.009870541274021 \\
\lambda_{72} = 0.000379944400556 & \lambda_{73} = 0.042665841426363 \\
\lambda_{74} = 0.033716209818106 & \lambda_{75} = 0.055263441854804 \\
\lambda_{76} = 0.024795346049276 \\
\end{array}
$$
The optimal sixth-order, seven-stage method ($c=0.26$):
$$\begin{array}{rr}
\mu_{21} = 0.090485932570398 \\
\mu_{22} = 0.090485932570397 \\
\mu_{32} = 0.346199513509666 \\
\mu_{33} = 0.056955495796615 \\
\mu_{41} = 0.089183260058590 \\
\mu_{42} = 0.122181527536711 \\
\mu_{43} = 0.340520235772773 \\
\mu_{44} = 0.086699362107543 \\
\mu_{51} = 0.214371998459638 \\
\mu_{52} = 0.046209156887254 \\
\mu_{53} = 0.215162143673919 \\
\mu_{54} = 0.000000362542364 \\
\mu_{55} = 0.209813410800754 \\
\mu_{61} = 0.000000591802702 \\
\mu_{62} = 0.390556634551239 \\
\mu_{63} = 0.000000491944026 \\
\mu_{64} = 0.330590135449081 \\
\mu_{65} = 0.007410530577593 \\
\mu_{66} = 0.070407008959133 \\
\mu_{71} = 0.000000021842570 \\
\mu_{72} = 0.325421794191472 \\
\mu_{73} = 0.069025907032937 \\
\mu_{74} = 0.373360315300742 \\
\mu_{75} = 0.007542750523234 \\
\mu_{76} = 0.005465714557738 \\
\mu_{77} = 0.063240270982556 \\
\mu_{81} = 0.044161355044152 \\
\mu_{82} = 0.204837996136028 \\
\mu_{83} = 0.191269829083813 \\
\mu_{84} = 0.255834644704751 \\
\mu_{85} = 0.015984178241749 \\
\mu_{86} = 0.016124165979879 \\
\mu_{87} = 0.151145768228502 \\
\lambda_{21} = 0.023787133610744 \\
\lambda_{32} = 0.091009661390427 \\
\lambda_{41} = 0.023444684301672 \\
\lambda_{42} = 0.032119338749362 \\
\lambda_{43} = 0.089516680829776 \\
\lambda_{51} = 0.056354565012571 \\
\lambda_{52} = 0.012147561037311 \\
\lambda_{53} = 0.056562280060094 \\
\lambda_{54} = 0.000000095305905 \\
\lambda_{61} = 0.000000155574348 \\
\lambda_{62} = 0.102670355321862 \\
\lambda_{63} = 0.000000129323288 \\
\lambda_{64} = 0.086906235023916 \\
\lambda_{65} = 0.001948095974350 \\
\lambda_{71} = 0.000000005742021 \\
\lambda_{72} = 0.085547570527144 \\
\lambda_{73} = 0.018145676643359 \\
\lambda_{74} = 0.098149750494075 \\
\lambda_{75} = 0.001982854233713 \\
\lambda_{76} = 0.001436838619770 \\
\lambda_{81} = 0.011609230551384 \\
\lambda_{82} = 0.053848246287940 \\
\lambda_{83} = 0.050281417794762 \\
\lambda_{84} = 0.067254353278777 \\
\lambda_{85} = 0.004201954631994 \\
\lambda_{86} = 0.004238754905099 \\
\lambda_{87} = 0.039733519691061 \\
\end{array}
$$
The optimal sixth-order, eight-stage method ($c=2.25$):
$$
\begin{array}{rr}
\mu_{21} = 0.078064586430339 \\
\mu_{22} = 0.078064586430334 \\
\mu_{31} = 0.000000000128683 \\
\mu_{32} = 0.207887720440412 \\
\mu_{33} = 0.051491724905522 \\
\mu_{41} = 0.039407945831803 \\
\mu_{43} = 0.256652317630585 \\
\mu_{44} = 0.062490509654886 \\
\mu_{51} = 0.009678931461971 \\
\mu_{52} = 0.113739188386853 \\
\mu_{54} = 0.227795405648863 \\
\mu_{55} = 0.076375614721986 \\
\mu_{62} = 0.010220279377975 \\
\mu_{63} = 0.135083590682973 \\
\mu_{65} = 0.235156310567507 \\
\mu_{66} = 0.033370798931382 \\
\mu_{72} = 0.000000009428737 \\
\mu_{73} = 0.112827524882246 \\
\mu_{74} = 0.001997541632150 \\
\mu_{75} = 0.177750742549303 \\
\mu_{76} = 0.099344022703332 \\
\mu_{77} = 0.025183595544641 \\
\mu_{81} = 0.122181071065616 \\
\mu_{82} = 0.000859535946343 \\
\mu_{83} = 0.008253954430873 \\
\mu_{84} = 0.230190271515289 \\
\mu_{85} = 0.046429529676480 \\
\mu_{86} = 0.017457063072040 \\
\mu_{87} = 0.017932893410781 \\
\mu_{88} = 0.322331010725841 \\
\mu_{91} = 0.011069087473717 \\
\mu_{92} = 0.010971589676607 \\
\mu_{93} = 0.068827453812950 \\
\mu_{94} = 0.048864283062331 \\
\mu_{95} = 0.137398274895655 \\
\mu_{96} = 0.090347431612516 \\
\mu_{97} = 0.029504401738350 \\
\mu_{98} = 0.000167109498102 \\
\lambda_{21} = 0.175964293749273 \\
\lambda_{31} = 0.000000000290062 \\
\lambda_{32} = 0.468596806556916 \\
\lambda_{41} = 0.088828900190110 \\
\lambda_{43} = 0.578516403866171 \\
\lambda_{51} = 0.021817144198582 \\
\lambda_{52} = 0.256377915663045 \\
\lambda_{54} = 0.513470441684846 \\
\lambda_{62} = 0.023037388973687 \\
\lambda_{63} = 0.304490034708070 \\
\lambda_{65} = 0.530062554633790 \\
\lambda_{72} = 0.000000021253185 \\
\lambda_{73} = 0.254322947692795 \\
\lambda_{74} = 0.004502630688369 \\
\lambda_{75} = 0.400665465691124 \\
\lambda_{76} = 0.223929973789109 \\
\lambda_{81} = 0.275406645480353 \\
\lambda_{82} = 0.001937467969363 \\
\lambda_{83} = 0.018605123379003 \\
\lambda_{84} = 0.518868675379274 \\
\lambda_{85} = 0.104656154246370 \\
\lambda_{86} = 0.039349722004217 \\
\lambda_{87} = 0.040422284523661 \\
\lambda_{91} = 0.024950675444873 \\
\lambda_{92} = 0.024730907022402 \\
\lambda_{93} = 0.155143002154553 \\
\lambda_{94} = 0.110144297841125 \\
\lambda_{95} = 0.309707532056893 \\
\lambda_{96} = 0.203650883489192 \\
\lambda_{97} = 0.066505459796630 \\
\lambda_{98} = 0.000376679185235 \\
\end{array}
$$
The optimal sixth-order, nine-stage method ($c=5.80$):
$$
\begin{array}{rr}
\mu_{21} = 0.060383920365295 \\
\mu_{22} = 0.060383920365140 \\
\mu_{31} = 0.000000016362287 \\
\mu_{32} = 0.119393671070984 \\
\mu_{33} = 0.047601859039825 \\
\mu_{42} = 0.000000124502898 \\
\mu_{43} = 0.144150297305350 \\
\mu_{44} = 0.016490678866732 \\
\mu_{51} = 0.014942049029658 \\
\mu_{52} = 0.033143125204828 \\
\mu_{53} = 0.020040368468312 \\
\mu_{54} = 0.095855615754989 \\
\mu_{55} = 0.053193337903908 \\
\mu_{61} = 0.000006536159050 \\
\mu_{62} = 0.000805531139166 \\
\mu_{63} = 0.015191136635430 \\
\mu_{64} = 0.054834245267704 \\
\mu_{65} = 0.089706774214904 \\
\mu_{71} = 0.000006097150226 \\
\mu_{72} = 0.018675155382709 \\
\mu_{73} = 0.025989306353490 \\
\mu_{74} = 0.000224116890218 \\
\mu_{75} = 0.000125522781582 \\
\mu_{76} = 0.125570620920810 \\
\mu_{77} = 0.019840674620006 \\
\mu_{81} = 0.000000149127775 \\
\mu_{82} = 0.000000015972341 \\
\mu_{83} = 0.034242827620807 \\
\mu_{84} = 0.017165973521939 \\
\mu_{85} = 0.000000000381532 \\
\mu_{86} = 0.001237807078917 \\
\mu_{87} = 0.119875131948576 \\
\mu_{88} = 0.056749019092783 \\
\mu_{91} = 0.000000072610411 \\
\mu_{92} = 0.000000387168511 \\
\mu_{93} = 0.000400376164405 \\
\mu_{94} = 0.000109472445726 \\
\mu_{95} = 0.012817181286633 \\
\mu_{96} = 0.011531979169562 \\
\mu_{97} = 0.000028859233948 \\
\mu_{98} = 0.143963789161172 \\
\mu_{99} = 0.060174596046625 \\
\mu_{10,1} = 0.001577092080021 \\
\mu_{10,2} = 0.000008909587678 \\
\mu_{10,3} = 0.000003226074427 \\
\mu_{10,4} = 0.000000062166910 \\
\mu_{10,5} = 0.009112668630420 \\
\mu_{10,6} = 0.008694079174358 \\
\mu_{10,7} = 0.017872872156132 \\
\mu_{10,8} = 0.027432316305282 \\
\mu_{10,9} = 0.107685980331284 \\
\lambda_{21} = 0.350007201986739 \\
\lambda_{31} = 0.000000094841777 \\
\lambda_{32} = 0.692049215977999 \\
\lambda_{42} = 0.000000721664155 \\
\lambda_{43} = 0.835547641163090 \\
\lambda_{51} = 0.086609559981880 \\
\lambda_{52} = 0.192109628653810 \\
\lambda_{53} = 0.116161276908552 \\
\lambda_{54} = 0.555614071795216 \\
\lambda_{61} = 0.000037885959162 \\
\lambda_{62} = 0.004669151960107 \\
\lambda_{63} = 0.088053362494510 \\
\lambda_{64} = 0.317839263219390 \\
\lambda_{65} = 0.519973146034093 \\
\lambda_{71} = 0.000035341304071 \\
\lambda_{72} = 0.108248004479122 \\
\lambda_{73} = 0.150643488255346 \\
\lambda_{74} = 0.001299063147749 \\
\lambda_{75} = 0.000727575773504 \\
\lambda_{76} = 0.727853067743022 \\
\lambda_{81} = 0.000000864398917 \\
\lambda_{82} = 0.000000092581509 \\
\lambda_{83} = 0.198483904509141 \\
\lambda_{84} = 0.099500236576982 \\
\lambda_{85} = 0.000000002211499 \\
\lambda_{86} = 0.007174780797111 \\
\lambda_{87} = 0.694839938634174 \\
\lambda_{91} = 0.000000420876394 \\
\lambda_{92} = 0.000002244169749 \\
\lambda_{93} = 0.002320726117116 \\
\lambda_{94} = 0.000634542179300 \\
\lambda_{95} = 0.074293052394615 \\
\lambda_{96} = 0.066843552689032 \\
\lambda_{97} = 0.000167278634186 \\
\lambda_{98} = 0.834466572009306 \\
\lambda_{10,1} = 0.009141400274516 \\
\lambda_{10,2} = 0.000051643216195 \\
\lambda_{10,3} = 0.000018699502726 \\
\lambda_{10,4} = 0.000000360342058 \\
\lambda_{10,5} = 0.052820347381733 \\
\lambda_{10,6} = 0.050394050390558 \\
\lambda_{10,7} = 0.103597678603687 \\
\lambda_{10,8} = 0.159007699664781 \\
\lambda_{10,9} = 0.624187175011814 \\
\end{array}
$$
The optimal sixth-order, ten-stage method ($c=8.10$):
$$
\begin{array}{rr}
\mu_{21} = 0.054638144097621 \\
\mu_{22} = 0.054638144097609 \\
\mu_{32} = 0.094708145223810 \\
\mu_{33} = 0.044846931722606 \\
\mu_{43} = 0.108958403164940 \\
\mu_{44} = 0.031071352647397 \\
\mu_{51} = 0.004498251069701 \\
\mu_{52} = 0.005530448043688 \\
\mu_{54} = 0.107851443619437 \\
\mu_{55} = 0.018486380725450 \\
\mu_{62} = 0.015328210231111 \\
\mu_{63} = 0.014873940010974 \\
\mu_{64} = 0.000000013999299 \\
\mu_{65} = 0.093285690103096 \\
\mu_{66} = 0.031019852663844 \\
\mu_{73} = 0.023345108682580 \\
\mu_{74} = 0.000000462051194 \\
\mu_{76} = 0.100142283610706 \\
\mu_{77} = 0.037191650574052 \\
\mu_{84} = 0.020931607249912 \\
\mu_{85} = 0.007491225374492 \\
\mu_{86} = 0.000000004705702 \\
\mu_{87} = 0.094887152674486 \\
\mu_{88} = 0.041052752299292 \\
\mu_{94} = 0.000000000437894 \\
\mu_{95} = 0.013484714992727 \\
\mu_{96} = 0.012301077330264 \\
\mu_{98} = 0.097178530400423 \\
\mu_{99} = 0.039273658398104 \\
\mu_{10,1} = 0.000987065715240 \\
\mu_{10,2} = 0.000000347467847 \\
\mu_{10,6} = 0.004337021151393 \\
\mu_{10,7} = 0.011460261685365 \\
\mu_{10,8} = 0.002121689510807 \\
\mu_{10,9} = 0.104338127248348 \\
\mu_{10,10} = 0.042268075457472 \\
\mu_{11,3} = 0.000656941338471 \\
\mu_{11,7} = 0.015039465910057 \\
\mu_{11,8} = 0.004816543620956 \\
\mu_{11,9} = 0.031302441038151 \\
\mu_{11,10} = 0.071672462436845 \\
\lambda_{21} = 0.442457635916190 \\
\lambda_{32} = 0.766942997969774 \\
\lambda_{43} = 0.882341050812911 \\
\lambda_{51} = 0.036426667979449 \\
\lambda_{52} = 0.044785360253007 \\
\lambda_{54} = 0.873376934047102 \\
\lambda_{62} = 0.124127269944714 \\
\lambda_{63} = 0.120448606787528 \\
\lambda_{64} = 0.000000113365798 \\
\lambda_{65} = 0.755424009901960 \\
\lambda_{73} = 0.189047812082446 \\
\lambda_{74} = 0.000003741673193 \\
\lambda_{76} = 0.810948446244362 \\
\lambda_{84} = 0.169503368254511 \\
\lambda_{85} = 0.060663661331375 \\
\lambda_{86} = 0.000000038106595 \\
\lambda_{87} = 0.768392593572726 \\
\lambda_{94} = 0.000000003546047 \\
\lambda_{95} = 0.109198714839684 \\
\lambda_{96} = 0.099613661566658 \\
\lambda_{98} = 0.786948084216732 \\
\lambda_{10,1} = 0.007993221037648 \\
\lambda_{10,2} = 0.000002813781560 \\
\lambda_{10,6} = 0.035121034164983 \\
\lambda_{10,7} = 0.092804768098049 \\
\lambda_{10,8} = 0.017181361859997 \\
\lambda_{10,9} = 0.844926230212794 \\
\lambda_{11,3} = 0.005319886250823 \\
\lambda_{11,7} = 0.121789029292733 \\
\lambda_{11,8} = 0.039004189088262 \\
\lambda_{11,9} = 0.253485990215933 \\
\lambda_{11,10} = 0.580400905152248 \\
\end{array}
$$